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引入

一套完整的数据分析流程：
1. Q: 数据? =⇒ A: 概率分布（Lecture 1）
2. Q: 建模? =⇒ A: 统计学习（Lecture 2）
3. Q: 算法? =⇒ A: 优化
4. Q: 决策（预测）? =⇒ A: 统计推断
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引入

本节课的内容主要基于 BST235: Advanced Regression and Statistical
Learning 的 Lecture Notes, A Primer on Reproducing Kernel Hilbert
Spaces1以及 CS229T/STAT231: Statistical Learning Theory 的 Lecture
Notes2。
本节课内容包括：
回归（线性模型）
Lasso
核方法与 RKHS（非线性模型）

1https://arxiv.org/pdf/1408.0952.pdf
2https://web.stanford.edu/class/cs229t/notes.pdf
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引入

相比传统课程，我们更关注统计学习角度的内容：
模型的应用场景 (e.g., 什么时候用 Lasso)
模型的学习率 (learning rate)
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背景知识

在课程中，我们会用到以下的背景知识
（中心化的）亚高斯随机变量。如果一个随机变量 X ∈ R 满足
E[X] = 0 且

E[exp(sX)] ≤ exp
(
σ2s2
2

)
, ∀s ∈ R

我们称这个随机变量服从参数（variance proxy）为 σ2 的亚高斯分
布。亚高斯随机变量可以看作是高斯随机变量的推广，它具有很好
的薄尾性质。（作业题 1）
OP 记号。如果任取 ϵ > 0, 存在 C > 0 以及 N > 0 使得对于所有的
n > N 都有

P (|Xn/an| > C) < ϵ,

则称 Xn = OP (an)。
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回归

给定 i = 1, . . . , n 时的响应变量 Yi 和协变量 Xi，回归模型假设

Yi = f(Xi) + εi, for all i = 1, . . . , n.

其中 εi 是误差/噪声。通常我们假设误差项满足 Eεi = 0 且 ε1, . . . , εn 是
独立的。
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线性回归

线性回归模型是一种特殊的回归模型，其中我们假设 f(x) = x⊤β，
β ∈ Rd，因此回归模型变为

Yi = X⊤
i β + εi, for all i = 1, . . . , n.

我们还要引入一些矩阵符号来更方便地表达线性回归问题。我们定义设
计矩阵 X = (X⊤

1 , . . . ,X⊤
n )

⊤ ∈ Rn×d，响应向量 Y = (Y1, . . . ,Yn)⊤ ∈ Rn

以及噪声向量 ε = (ε1, . . . , εn)⊤ ∈ Rn。我们可以将线性模型写作

Y = Xβ + ε.

我们也将设计矩阵写为列 X = (X̃1, . . . , X̃d)，其中 X̃j 是 X 的第 j 列。
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线性回归

线性回归有两种典型情形:
非随机：协变量 X1, . . . ,Xn 是确定的。
随机：协变量 X1, . . . ,Xn 是随机的，并且我们通常假设 ε 独立于 X。

在本次讲座及回归分析中，我们都关注了非随机情形。如果 X 实际上是
随机的，我们可以对 X 取条件并还原到非随机的情形。
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线性回归

我们在统计学习理论中主要关心两件事情：预测与参数估计。
预测。我们可以用估计 f̂ 与真实函数 f ∗ 之间的均方误差（Mean
Squared Error，MSE）来衡量预测准确性：

MSE(f̂ ) = 1

n

n∑
i=1

(f̂ (Xi)− f ∗(Xi))
2.

在线性回归场景下，我们可以将均方误差表示为：

MSE(Xβ̂) = 1

n

n∑
i=1

(X⊤
i β̂ − X⊤

i β
∗)2 =

1

n‖X(β̂ − β∗)‖2

= (β̂ − β∗)⊤Σ̂(β̂ − β∗),

其中 Σ̂ = X⊤X/n = 1
n
∑n

i=1 X⊤
i Xi 是样本的协方差矩阵。

参数估计。我们关心估计 β̂ 与 β∗ 的差距，也即 ‖β̂ − β∗‖ 的收敛速
度。
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线性回归

下面我们以最常见的最小二乘估计为例，阐释统计学习理论中一个很重
要的概念——收敛速度。一般而言，收敛速度是刻画模型好坏最直观的
统计结果。让我们首先引入最小二乘估计：

β̂LS = arg min
β

n∑
i=1

(Yi − X⊤
i β)

2 = arg min
β

‖Y − Xβ‖2.

下面给出了普通最小二乘估计的闭式解。

最小二乘估计的闭式解

β̂LS = (X⊤X)†X⊤Y,

其中 A† 是 A 的 Moore-Penrose 伪逆。
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线性回归

我们给出简单的证明。

证明

根据定义，最小二乘损失在 β̂LS 处的临界点有

0 =
∂

∂β
‖Y − Xβ‖2

∣∣∣∣
β=β̂LS

= 2X⊤(Y − Xβ̂LS).

解上述方程，可得 X⊤Xβ̂LS = X⊤Y，因此 β̂LS = (X⊤X)†X⊤Y。
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线性回归

下面我们来讲一讲最小二乘估计得到的估计的收敛速度。

最小二乘估计下 MSE 的收敛速度
对独立的误差项 ε1� . . . �εn 而言，如果它们满足 Eεi = 0 且服从参数
(variance proxy) 为 σ2 的亚高斯 (sub-Gaussian) 分布，则

E[MSE(Xβ̂LS)] ≲ σ2r
n ,

并且至少以 1− δ 的概率，

MSE(Xβ̂LS) ≲ σ2r
n +

σ2

n log(1
δ
).

其中 rank(X) = r，an ≲ bn 表示存在一个与 n 无关的常数 C，使得对于
所有 n，an ≤ Cbn。
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线性回归

为了证明这个定理，我们先引入刻画亚高斯噪声性质的极大值不等式
(maximal inequality)。

ℓ2 范数的极大值不等式
给定随机向量 X ∈ Rd。如果对所有 u ∈ Rd，〈u,X〉 都是参数为 σ2‖u‖2
的亚高斯随机变量，则有

E‖X‖ ≤ 4σ
√

d.

并且以不低于 1− δ 的概率有

‖X‖ ≤ 4σ
√

d + 2σ
√

2 log(1/δ).

由于该不等式的证明需要引入 ε 网与覆盖数的概念，时间关系，我们在
此只给出结果3。

3见 Theorem 1.19，https:
//ocw.mit.edu/courses/18-s997-high-dimensional-statistics-spring-2015/
a69e2f53bb2eeb9464520f3027fc61e6_MIT18_S997S15_Chapter1.pdf
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线性回归

证明

我们使用优化中的零阶条件作为证明的起点，也即 β̂LS 是 ‖Y − Xβ̂‖2
的最优解。我们可以建立起 β̂LS 与 β̂∗ 的联系

‖Y − Xβ̂LS‖2 ≤ ‖Y − Xβ∗‖2 = ‖Xβ∗ + ε− Xβ∗‖2 = ‖ε‖2.

另一方面，

‖Y−Xβ̂LS‖2 = ‖Xβ∗+ε−Xβ̂LS‖2 = ‖X(β̂−β∗)‖2−2〈ε,X(β̂−β∗)〉+‖ε‖2.

因此，将上述两个不等式结合起来，可得

‖X(β̂ − β∗)‖2 ≤ 2〈ε,X(β̂ − β∗)〉 = 2‖X(β̂ − β∗)‖〈ε, X(β̂ − β∗)

‖X(β̂ − β∗)‖
〉. (1)
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线性回归

（续）

下一步，我们将通过“sup-out”技巧对 〈ε, X(β̂−β∗)

∥X(β̂−β∗)∥
〉 进行放缩。定义

C(X) 为 X 的列向量张成的线性空间。设 Φ = (ϕ1, . . . , ϕr) ∈ Rn×r 的列
向量为 C(X) 的标准正交基，满足 Φ⊤Φ = Ir。由于 X(β̂ − β∗) ∈ C(X)，
因此存在 ν = (ν1, . . . , νr)⊤ ∈ Rr，使得 X(β̂ − β∗) =

∑r
j=1 νjϕj = Φν。

定义 ε̃ = Φ⊤ε ∈ Rr，可得

〈ε, X(β̂ − β∗)

‖X(β̂ − β∗)‖
〉 = 〈ε, Φν

‖Φν‖
〉 = ε⊤Φν

‖ν‖
= 〈Φ⊤ε,

ν

‖ν‖
〉 ≤ sup

∥u∥≤1
〈ε̃, u〉 = ‖ε̃‖.

其中我们在上述第一个不等号中使用了“sup-out”技巧。将上述不等式
与上页的 (1) 结合起来，

MSE(Xβ̂LS) =
1

n‖X(β̂ − β∗)‖2 ≤ 4

n〈ε,
X(β̂ − β∗)

‖X(β̂ − β∗)‖
〉2 ≤ 4‖ε̃‖2

n .
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线性回归

（续）
因此我们可以求出 MSE 的期望的上界

E
[
MSE

(
Xβ̂LS

)]
≤ 4E‖ε̃‖2

n =
4

n

r∑
i=1

E
[
ε̃2i
]
≤ 16σ2r

n .

其中我们用到了 E
[
ε̃2i
]
= E

(
ϕ⊤

i ε
)2 ≤ 4σ2。这是亚高斯的性质（作业题

2）。
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线性回归

（续）
为了证明 MSE 的尾部概率不等式，我们需要 ℓ2 范数的最大不等式。因
此，我们需要验证对于任何 u ∈ Rr，〈u, ε̃〉 是具有参数为 σ2‖u‖2 的亚高
斯分布:

Eeλ⟨u,ε̃⟩ = Eeλ〈u,Φ⊤ε〉 = Eeλ⟨Φu,ε⟩ ≤ eλ2

2
∥Φu∥2σ2

= eλ2

2
σ2∥u∥2 .

现在我们可以使用极大值不等式了。把结果代入“sup-out”得到的 MSE
上界，以至少 1− δ 的概率可得

MSE
(
Xβ̂LS

)
≤ 4‖ε̃‖2

n ≤ 4

n [4σ
√

r+2σ
√

2 log(1/δ)]2 ≲ σ2r
n +

σ2

n log
(
1

δ

)
.
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Lasso

仍然考虑带噪声的线性回归

Y = Xβ + ε.

Lasso(Least Absolute Shrinkage and Selection Operator) 是通过求解

min
β

1

2n‖Y − Xβ‖22 + λ‖β‖1

得到的估计。
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Lasso

为什么要使用 Lasso？
实际使用的角度：限制模型的复杂度，使得模型更加稀疏（即某些
参数为零），从而提高模型的泛化能力和可解释性，解决过拟合问
题。同时它还可以进行特征选择
统计模型的角度：稀疏性假设

稀疏性假设
特征维度 d 可能很大，但只有少数特征真正发挥作用。

在线性回归的背景下，这意味着我们假设 β∗ 是稀疏的，即有

‖β∗‖0 = s << d.

因此，我们希望通过 Lasso 估计来复原真实的稀疏 β∗。那么自然地，我
们会关注 Lasso 估计的效率，也即 ‖β̂Lasso − β∗‖ 的收敛速度。
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Lasso

在高维情况下，最小二乘的损失函数 Ln(β) =
1
2n‖Y − Xβ‖22 有一些不

妙，因为它不太凸。这是因为 ∇2Ln(β̂) = X⊤X/n = Σ̂，当 d >> n 时，
λmin(Σ̂) = 0，意味着 ∇2Ln(β̂) 只是半正定的，不太行。

图: 左边比较凸，右边不太凸。不太凸的时候就会使 β̂ 和 β∗ 离得比较远。

所以我们需要一些条件才能够对 Lasso 的收敛速度进行描述。
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Lasso
RE 条件（Restricted Eigenvalue condition）
RE condition
定义 S := {j | β∗

j 6= 0} 为 β∗ 的支撑集合。如果在
Cα(S) := {∆ | ‖∆Sc‖1 ≤ α ‖∆S‖1} 中任取 ∆ ∈ Cα(S) 都有

1

n‖X∆‖22 ≥ κ‖∆‖22,

则称 X 满足 RE(κ, α) 条件。

由于样本协方差 Σ̂ = X⊤X/n 的最小特征值可以用下面的方法表示

λmin(Σ̂) = min
∆

∆⊤Σ̂∆

‖∆‖22
= min

∆

∆⊤X⊤X∆
n‖∆‖22

= min
∆

1

n
‖X∆‖22
‖∆‖22

,

所以 RE 条件就是限制了它的最小特征值在锥中会大于等于 κ

min
∆∈Cα(S)

1

n
‖X∆‖22
‖∆‖22

≥ κ.
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Lasso

这个锥 Cα(S) 的直观含义是什么呢？实际上就是在 S 能控制 Sc 的方向
上，最小二乘损失是凸的。
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Lasso

引入了这个条件，我们就不加证明地给出 Lasso 的收敛速度4。

Lasso 估计的收敛速度
如果模型满足：
噪声 ε1, . . . , εn 是独立的，且对于所有 i = 1, . . . , n，εi 是具有参数
为 σ2 的亚高斯随机变量
设计矩阵 X 已归一化，使得设计矩阵的第 j 列 Xj 的方差满足
1
n ‖Xj‖22 ≤ 1，其中 1 ≤ j ≤ d
X 满足 RE(κ, 3)，且我们选择 λ = σ

√
log(2d/δ)/(2n)

则至少以 1− δ 的概率有

‖β̂ − β∗‖2 ≤
3σ

2κ

√
2s log(2d/δ)

n .

4可以参见这个 note 的 Theorem 15.2 的证明，只使用了 Hölder 不等式：https://
www.stat.cmu.edu/~arinaldo/Teaching/36710/F18/Scribed_Lectures/Oct22.pdf

Tianjun Ke (RUC) Lecture 2 RUC 2023 28 / 48

https://www.stat.cmu.edu/~arinaldo/Teaching/36710/F18/Scribed_Lectures/Oct22.pdf
https://www.stat.cmu.edu/~arinaldo/Teaching/36710/F18/Scribed_Lectures/Oct22.pdf


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lasso

这个结果意味着，如果我们的惩罚项系数选为 λ = C
√

log d/n（C 为某
个充分大的常数），则 Lasso 估计器具有如下的收敛速度

‖β̂ − β∗‖2 = OP
(√s log d

n
)
.

只要 s log d/n = o(1)，Lasso 估计就是相合的。还可以注意到，如果 s
固定，维数 d 可以以样本大小的指数增长速度增加。
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Group Lasso

Lasso 估计器可用于从高维特征中选择变量。有时，这些特征是分组的，
我们想要选择分组中的变量。例如，我们想要预测明天的 COVID 病例
数。预测 Y 的协变量是分组的：
(1) 与过去病例数量相关的特征组：今天的病例数、昨天的病例数、过
去一个月的病例数等

(2) 与天气相关的特征组：温度、降水等
(3) 与隔离相关的特征组：在家工作的人数、开放餐馆的数量等
(4) 与特朗普相关的特征组：特朗普的推文数量、特朗普从 COVID 中
康复的天数等

我们可能期望 COVID 病例数与其中某个特征组相关。假设 β ∈ Rd 有 J
个组。我们将每个组表示为 Sj ⊂ 1, . . . , d，j = 1, . . . , J。因此，我们想要
选择子向量 βS1

, . . . , βSJ .
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Group Lasso

如果 β 是以组为单位稀疏的，那么向量(
‖βS1

‖2, ‖βS2
‖2, . . . , ‖βSJ‖2

)⊤ ∈ RJ 是稀疏的。因此，可以考虑 Group
Lasso 惩罚项

∥∥(‖βS1
‖2 , ‖βS2

‖2 , . . . ,
∥∥βSJ

∥∥
2

)∥∥
1
=

J∑
j=1

∥∥βSj

∥∥
2
.

Group Lasso 估计器可以表示如下：

min
β

‖Y −
J∑

j=1

XSjβSj‖
2
2 + λ

J∑
j=1

‖βSj‖2.
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Group Lasso in spAM

Group Lasso 的一个重要应用场景是在稀疏加和模型（sparse additive
model, spAM）5：

Yi =
d∑

j=1

fj (Xij) + εi, for i = 1, . . . , n,

其中只有 s 个函数 fj 是非零的。为了估计 fj，我们用基函数将函数展开
为：

fj (xj) =
∞∑

k=1

β∗
jkϕk (xj) , for j = 1, . . . , d.

其中 {ϕk}∞k=1 是我们选择的一种基函数, 比如多项式基
{

xk}∞
k=1

, 三角基
{sin(kx), cos(kx)}∞k=1, B 样条（B-splines）等等。

5https://arxiv.org/pdf/0711.4555.pdf
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Group Lasso in spAM

因此，如果我们想要选出正确的 fj，就等价于选择组内的基函数的系数
β∗

jk
∞
k=1
，其中 j = 1, . . . , d。因此，我们就可以使用 Group Lasso 进行估

计了。

spAM 的 Group Lasso 估计

min
βjk

1

n

n∑
i=1

(
Yi −

d∑
j=1

m∑
k=1

βjkϕk(Xij)
)2

+ λ

d∑
j=1

( m∑
k=1

β2
jk

) 1
2
,

其中 m 是我们选择用于近似真实函数的基函数的个数。
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核方法与 RKHS
在前面的回归中，我们基本上只关注了线性模型：f(x) = x⊤β = 〈x, β〉。
然而它难以对非线性关系进行建模。但是我们可以巧妙地将 〈x, β〉 替换
为 〈ϕ(x), β〉，其中 ϕ : X → Rd 是任意的特征映射，例如：

对于 x ∈ R，ϕ(x) = (1, x, x2)
对于一个字符串 x，ϕ(x) = (出现的 a 的次数, . . .)

因此，我们可以通过控制 ϕ(x) 来获得我们所需要的非线性特征。
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核方法与 RKHS

然而 ϕ(x) 可能有很高的维度（甚至无穷维！），如果我们先把 x 映射到
ϕ(x) 再来求解 f(x) = 〈ϕ(x), β〉 会带来非常高的计算开销。但是如果我们
可以用一些简单的运算“绕开”ϕ 的话，这个问题就会比较简单。让我
们考虑回归的最小二乘损失函数。

L(β̂) = 1

2n

n∑
i=1

(Yi − 〈β̂, ϕ(Xi)〉)2.

对 β̂ 求导, 由一阶条件可得

∇L(β̂) = 1

n

n∑
i=1

(Yi − 〈β̂, ϕ(Xi)〉)ϕ(Xi) = 0.
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核方法与 RKHS
如果把 ϕ(Xi) 视为一组基的话，我们可以把 β̂ 分解为

β̂ =

N∑
j=1

wjϕ(Xj) + v,

其中 v 垂直于 span{ϕ(Xj), j = 1, . . . ,N}。代入上面的式子就有

1

n

n∑
i=1

(Yi − 〈
N∑

j=1

wjϕ(Xj), ϕ(Xi)〉)ϕ(Xi) = 0.

我们发现，只要计算内积 〈ϕ(Xi), ϕ(Xj)〉 就可以求解上述问题。那我们只
要找到一个对应的函数 k，使得计算 k 相对比较简单，就“绕开”了 ϕ。
即找到下面这样的 k

k(Xi,Xj) = 〈ϕ(Xj), ϕ(Xi)〉.

这就是核技巧 (kernel trick)。
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核方法与 RKHS

我们进一步引入核函数的定义：

核函数
函数 k : X × X → R 是一个核函数当且仅当对于所有有限的点集
x1, . . . , xn ∈ X，由 Kij = k (xi, xj) 定义的核矩阵 K ∈ Rn×n 是半正定的。

在有惩罚项的情况下, 一定有 v = 0（由 representer theorem 得到），从而
对于新的数据 X，我们有 f̂ (X) =

∑N
j=1 wj〈ϕ(Xj), ϕ(X)〉。也就是说，预

测函数 f̂ (X) 同样也可以用核函数表示。我们给出一些常见的核函数：
线性核：k(x, x′) = 〈x, x′〉
多项式核：k(x, x′) = (〈x, x′〉+ c)p，其中 c 为某个常数，p 为多项式
的指数。

高斯/rbf 核：k(x, x′) = exp
(−∥x−x′∥22

2σ2

)
，最常用的核。
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核方法与 RKHS
那么很自然的，我们想知道 ϕ, f̂ 以及 k 之间的关系。尤其是对于 f̂，能
否直接地进行刻画呢？这就需要引入 RKHS(reproducing kernel hilbert
space)。
映射函数 ϕ：从一个数据点 x ∈ X 映射到一个内积空间 H 中的无
穷维向量。
核函数 k：将一对数据点 x, x′ ∈ X 映射到 R。它刻画了某种内积关
系（也即刻画了一对数据点之间的相似性）。
RKHS H：定义了内积 ‖ · ‖H 的函数 f : X → R 的集合（函数空
间）。RKHS 描述了预测函数 f̂ 的性质。
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核方法与 RKHS
我们给出严格的定义：

RKHS
先定义 Hilbert Space：Hilbert Space 是带有内积 〈·, ·〉 : H×H → R 的
完备向量空间，其中内积满足：

对称性：〈f, g〉 = 〈g, f 〉
线性：〈α1f1 + α2f2, g〉 = α1 〈f1, g〉+ α2 〈f2, g〉
正定性：〈f, f 〉 ≥ 0，且只在 f = 0 的时候取等

然后定义 RKHS：对 f : X → R 定义的 Hilbert Space，RKHS 满足对所
有的 x ∈ X，评估泛函 (evaluation functional) Lx := f 7→ f (x) 有界。

例子：对于 X = Rd 以及 H =
{

fc : c ∈ Rd}，其中 fc(x) = 〈c, x〉 是线性
函数, 则 evaluation functional 为 Lx (fc) = 〈c, x〉。
如何理解这个定义：Hilbert Space 定义了内积，而 RKHS 使得任何在 H
中的函数 f 在数据点 x ∈ X 上有良好的定义，也就是说我们可以算 f (x)
了。
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核方法与 RKHS

我知道了 RKHS 使得 f (x) 有良好的定义，可是为什么叫RKHS 呢？

再生核
对于包含 f : X → R 的 RKHS H，它的再生核 k : X × X → R 满足对于
所有 f ∈ H 以及 y ∈ X，有 〈f, k(·, y)〉 = f(y)。这里, k(·, y) 是指函数
x 7→ k(x, y)，且它是 H 中的一个元素。给定 x ∈ X，可以进一步证明这
个 k(x, ·) ∈ H 是唯一的 (Riez representation theorem)

如何理解 k(x, ·)？我们可以把它理解为 f 的“坐标”。
在欧式空间中，坐标是一个这样的东西：对于某个属于 Rn 的元素
(x1, · · · , xn)，我们可以用 xi 表示它第 i 维的坐标。也就是说坐标函数
πi : Rn → R 把 (x1, · · · , xn) 送去了 xi，而且它是连续的。那么对于
RKHS 来说，根据定义我们知道 Lx(f ) = f(x) = 〈f, k(·, x)〉，其中 Lx 是我
们所说的 evaluation functional。因此，我们也有这样的坐标函数
Lx : H → R 把 f 送去了 f(x)，而且它也是连续的6。

6线性泛函有界和连续等价，而根据定义，Lx 在 RKHS 上有界
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核方法与 RKHS

坐标真的很炫酷！正如 Rn 中我们可以用坐标表示所有元素，在 RKHS
中我们也可以用坐标表示所有元素7（更严格地说，借助核函数 k 指定
的坐标来构建 RKHS）。
任取 n ∈ N，我们可以用 f :=

∑n
i=1 αik(xi, ·) 定义 RKHS 的元素（坐标的

有限线性组合，αi ∈ R），并定义内积：〈f, g〉� =
∑n

i=1

∑n
j=1 αiα′

jk(xi, xj)。
完备化后即可得到一个 k 对应的 RKHS8。

7关于坐标系统的讨论，见https://arxiv.org/pdf/1408.0952.pdf的 1.3
8Moore-Aronszajn theorem, 见

https://web.stanford.edu/class/cs229t/notes.pdf的 Theorem 22 或
者https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
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核方法与 RKHS

现在我们能够描述它们之间的关系了!
ϕ 确定 k：给定 ϕ : X → H，k(x, x′) := 〈ϕ(x), ϕ(x′)〉 是核函数
k 确定 ϕ：给定 k，存在一个 Hilbert Space H 和映射函数
ϕ : X → H 使得 k(x, x′) = 〈ϕ(x), ϕ(x′)〉
RKHS 确定 k：每个 RKHS H 都有唯一一个再生核 k : X × X → R
k 确定 RKHS：对所有的核函数 k，都存在唯一一个再生核为 k 的
RKHS H
RKHS 确定预测函数 f̂：representer theorem！
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核方法与 RKHS

Representer theorem
令 H 为核函数 k 对应的 RKHS，‖f ‖H 表示空间 H 中的函数 f 的范数。
∀ 单调递增函数 Ω : [0,∞] → R 和 ∀ 非负损失函数 ℓ : Rn → [0,∞]� 优
化问题

min
f∈H

L(f ) = Ω (‖f ‖H) + ℓ (f (x1) , . . . , f (xn))

的解总可以写成

f ∗(x) =
n∑

i=1

αik (x, xi)

一方面，当我们给定了一个核 k 之后，预测函数 f̂ 一定会在 k 对应的
RKHS 里，从而 RKHS 描述了 f̂ 的所有性质。另一方面，representer
theorem 给出了现实中求解 kernel 相关优化问题的方法，见下一个例子。
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核方法与 RKHS

例子：
核岭回归 (kernel ridge regression)：

min
f∈H

n∑
i=1

1

2
(f (xi)− yi)

2 +
λ

2
‖f ‖2H

用 representer theorem，我们等价于解决以下的问题：

min
α∈Rn

n∑
i=1

1

2

 n∑
j=1

αjk (xi, xj)− yi

2

+
λ

2

n∑
i=1

n∑
j=1

αiαjk (xi, xj) .

定义 K ∈ Rn×n 为核矩阵，Y ∈ Rn 为向量形式的响应变量，则有

min
α∈Rn

1

2
‖Kα− Y‖22 +

λ

2
α⊤Kα.
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核方法与 RKHS

使用优化的一阶条件（对 α 求导置 0）：

K(Kα− Y) + λKα = 0.

得到解为
α = (K + λI)−1Y.

对于一个新的输入 x，怎么获得 f̂ (x) 呢？（作业题 3）
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总结

我们最后通过一些问题回顾本节课的内容
统计学习如何描述一个模型的性质？
统计角度下，为什么我们热爱 Lasso？
什么时候可以用 Group Lasso？
为什么引入核方法？
我们已经有 kernel 了，RKHS 有什么用？
用 kernel 有什么缺陷呢？
kernel 如何在深度学习中登场？（Neural tangent kernel, Deep kernel
learning, etc.）
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作业

1. 对于一个服从参数为 σ2 的亚高斯分布的随机变量，证明任取
t > 0，都有 P(X > t) ≤ exp

(
− t2

2σ2

)
9。

2. 证明 P20 的 E
[
ε̃2i
]
= E

(
ϕ⊤

i ε
)2 ≤ 4σ2 10。

3. 写出 P46 的 f̂ (x) 的具体形式。
4. 利用 representer theorem 和 RKHS 的性质，解释为什么 P46 中

‖f ‖H = α⊤Kα。进一步的，定义 n-norm 为 ‖f ‖2n = 1
n
∑n

i=1 f (xi)，
给出它的矩阵形式。

9Hint：Chernoff bound P(X > t) ≤ P
(
esX > est) + Markov’s inequality

10Hint：利用 E
[
|X|k

]
=

∫∞
0

P
(
|X|k > t

)
dt
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